REFERAT-MenüDeutschGeographieGeschichteChemieBiographienElektronik
 EnglischEpochenFranzösischBiologieInformatikItalienisch
 KunstLateinLiteraturMathematikMusikPhilosophie
 PhysikPolitikPsychologieRechtSonstigeSpanisch
 SportTechnikWirtschaftWirtschaftskunde  



Einfuhrung Schwingungen und Wellen - Nachrichtentechnik


Einführung: Schwingungen und Wellen




 

 

 
Text Box: AuslenkungText Box: GeschwindigkeitNahezu alles im Leben besteht aus Schwingungen oder Wellen. Wobei beiden das Bestreben von jedem stabilen System zugrunde liegt sich der Ruhelage, bzw. dem Gleichgewicht anzunähern. Bewegt man also ein stabiles System, welches sich in seiner Ruhelage befindet, aus seiner Ruhe, so wird es versuchen möglichst schnell wieder in seine Ruhelage zurückzukehren. Jedoch verfügt ein solches System meist nicht über die nötige Abremsenergie, um an seiner Ruhelage auch wieder in Ruhe zu verweilen. Es "schießt" vielmehr über die Ruhelage hinaus und verursacht somit eine neue Störung, womit sich die Bewegung zur Ruhelage hin wiederholt. Setzt man ein Vakuum voraus, so muß man davon ausgehen, daß diese Bewegung niemals endet, da das System exakt die gleiche Störung durchläuft, wenn es über die Ruhelage hinausschießt, wie am Anfang. Es entsteht eine ungedämpfte Schwingung, das heißt eine Schwingung, die durch nichts gedämpft wird und somit niemals aufhört zu schwingen. Will man eine ungedämpfte, harmonische Schwingung in allgemeiner Form in Abhängigkeit von der Zeit darstellen, so erhält man eine Sinuskurve.  Wobei deren 1. Ableitung der Geschwindigkeit und die 2. Ableitung der Beschleunigung entspricht.(siehe Abb.1) Man kann sagen: Eine harmonische Schwingung ist immer auch eine Sinus-Schwingung.


Nun treten aber in der normalen Umwelt Kräfte auf, die eine solche Schwingung unmöglich machen. Solche Kräfte sind zum Beispiel Erdanziehungskräfte oder Reibungen. Diese Kräfte bremsen das schwingende System zusätzlich ab. Die maximale Elongation der Schwingung, wird so immer kleiner, bis die Ruhelage wieder erreicht ist. So eine Schwingung nennt man gedämpfte Schwingung.(siehe Abb.2) In der Realität sind nur diese möglich, da es unmöglich ist einen Raum ohne äußere Einflüsse zu generieren. Findet nun aber an einem schwingungsfähigen System nicht nur eine einmalige Anregung, um dann sich selbst überlassen zu werden, sondern vielmehr eine andauernde Anregung statt, so führt das System eine erzwungene Schwingung aus, die von einem anderen schwingenden System (Erreger) hervorgerufen wird. Dabei bestimmt der Erreger die Frequenz. Bei einer gekoppelten Schwingung sind beide Systeme gleichwertig, so daß die Erreger und Resonator-Rolle ständig gewechselt wird. Fängt eines der Systeme an zu schwingen, überträgt er auch Schwingungsenergie auf das zweite System was dann, quasi von dem ersten angeregt, auch anfängt zu schwingen. Das zweite System wird jetzt zum Erreger und gibt wieder Schwingungsenergie auf das erste System ab. Hat man nun nicht nur zwei gekoppelte Systeme, sondern unendlich viele, so entsteht eine Welle. Dabei wird die Schwingungsenergie immer an das benachbarte System weitergegeben. Betrachtet man eine Momentaufnahme einer Welle erkennt man eine Sinus-ähnliche Darstellung. Die Energie-Übertragungsgeschwindigkeit oder auch Ausbreitungsgeschwindigkeit ist dabei konstant. Bei einer zeitlichen Betrachtung eines beliebigen Systems innerhalb der Welle erhält man ebenfalls eine Sinuskurve. Bei der Wellenbewegung gibt prinzipiell zwei mögliche Schemata: Einmal können die Systeme ihre Schwingung in Richtung des benachbarten Systems ausführen. Die dadurch entstehenden Wellen heißen Longitudinalwellen. Bei ihnen sind Verdichtungen und Verdünnungen zu beobachten. Die zweite Möglichkeit ist, daß die einzelnen Systeme ihre Schwingung seitlich zu den benachbarten Systemen ausführen. Bei diesen Schwingungen entsteht eine Transversalwelle, die sich durch Berge und Täler auszeichnen. Natürlich sind auch Wellen möglich die beide Wellenarten beinhalten, wie z.B. Wasserwellen. Generell kann man sagen: Jede Welle setzt sich aus transversalen und longitudinalen Sinus-Wellen zusammen, und kann somit in solche zerlegt werden. Da für jede mechanische Welle schwingende Systeme Voraussetzung sind, können diese nicht in einem Vakuum entstehen.


Einführung: Akustik - Schallwellen


Ein beachtlicher Teil von mechanischen Wellen drückt sich in akustischen Wellen aus, also in Schallwellen. Hierbei treten hauptsächlich Longitudinalwellen (Längswellen) auf, also Wellen, die sich in die Fortschreitungsrichtung bewegen. In Gasen sind sogar nur diese möglich. In Flüssigkeiten oder Festkörpern können auch Transversalwellen (Querwellen) entstehen, welche sich seitlich zu der Fortschreitungsrichtung bewegen. Bei den Flüssigkeiten jedoch sind Transversalwellen nur an der Oberfläche möglich, da nur an der Oberfläche Verformungen aufgrund der Elastizität der Oberflächenspannung entstehen können. Unter der Oberfläche können nur Longitudinalwellen in Form von Druckwellen auftreten wie sie auch in Gasen existieren können. Diese Regeln gelten für alle mechanischen Wellen.

Schallwellen werden in folgenden drei Kategorien aufgeteilt: Als Hörschall versteht man den Schall von 16 Hz bis 20000 Hz, was ungefähr dem maximalen Hörvermögen des menschlichen Gehörs entspricht. Der Schall der unterhalb der 16 Hz-Grenze liegt bezeichnet man als Infraschall, welcher sich in Schwingungen ausdrückt, die der Mensch durch den ganzen Körper wahrnimmt, der bei diesen Frequenzen mitschwingt und einem Vibrationen vermittelt. Beispiele sind hierbei Bodenschwingungen, Gebäudeschwingungen oder Motorschwingungen. Der Schall der oberhalb von 20000 Hz liegt wird durch die Bezeichnung "Ultraschall" definiert. Er wird nicht vom Menschen wahrgenommen, kann aber unter Umständen zu Zellschäden führen. In dieser Facharbeit wird jedoch nur der Bereich des Hörschalls behandelt.


Verhalten von Schallwellen in Gasen, Flüssigkeiten und Festkörpern


Wie schon erwähnt können Schallwellen entweder in Gasen, in Flüssigkeiten oder in Festkörpern auftauchen. Wobei sich die Schallwellen in Gasen und Flüssigkeiten hauptsächlich darin unterscheiden, daß die Schallgeschwindigkeit äußerst unterschiedlich ausfällt, was aus der Formel [4] hervorgeht. Durch den hohen Kompressionsmodul K, der gegenüber der Dichte einen deutlich höheren Wert haben wird, ist die Schallgeschwindigkeit der Dichtewellen in Flüssigkeiten im allgemeinen höher als in Gasen. Der Kompressionsmodul ergibt sich aus p [4], wobei das Verhältnis der spezifischen Wärmen bei konstantem Druck und konstantem Volumen (Adiabatenkoeffizient) und p den Druck darstellt. Aus der Schallgeschwindigkeitsformel ist auch zu erkennen, daß eine starke Abhängigkeit von der Dichte vorhanden ist, also in verschieden Gasen oder Flüssigkeiten auch andere Schallgeschwindigkeiten herrschen müssen. Die Schallgeschwindigkeit kann man ebenfalls über die Formel ermitteln. Allerdings ist die Wellenlänge in Gasen und meist auch in Flüssigkeiten etwas schwer zu bestimmen.(siehe S.14) Sonst ist das Betrachten der Schallwellen in Flüssigkeiten und Gasen nahezu gleich. In beiden sind die Scherkräfte, zu vernachlässigen, da sie verschwindend gering sind. Es sind nur longitudinale Dichtewellen zu beobachten. Hierbei ist zu beachten, daß die Oberfläche einer Flüssigkeit eine Ausnahme darstellt. Denn an ihr können auch Transversalwellen entstehen, da es dort den Flüssigkeitsmolekülen möglich ist die Oberflächenform zu verändern und damit Schwingungen, die für Transversalwellen nötig sind, entstehen zu lassen. In Festkörpern verändert sich die Schallgeschwindigkeit nicht mehr abhängig vom Kompressionsmodul, sondern vom Elastizitätsmodul. Es können in festen Körpern außer Longitudinalwellen wie Dehnwellen auch Transversalwellen wie Schub- oder Biegewellen auftreten, die nicht nur vom Stoff abhängen sondern auch von der Form abhängig sein können. Um die Schallgeschwindigkeit in Festkörpern zu bestimmen ist die oben verwendete Formel nicht mehr anzuwenden. Die Geschwindigkeit des Schalls in Festkörpern muß man für jede Wellenart (Dehn-, Biege-, wellen) anders ausrechnen, wobei die Berechnung, wie sich noch zeigt, sehr komplex werden kann. Bei diesen Berechnungen ist vor allem das Elastizitätsmodul E und meist die Poisson-Zahl zu berücksichtigen. Das Elastizitätsmodul E entsteht wie folgt: Wenn ein Draht mit der Länge und dem kreisförmigen Querschnitt A um das Stück gedehnt wird, so wird eine Kraft F und eine mechanische Spannung benötigt. Daraus ergeben sich folgende Formeln:

Elastizitätsmodul [4], wobei die Spannung ist, also

Durch die Kontraktion des Drahtes verändert sich auch der Durchmesser um

Hier kommt man dann zur Poisson-Zahl, die eine Art Verhältnis zwischen Dehnung und Kontraktion darstellt. Sie schließt somit alle Formveränderungen von Querkontraktionen ein und bildet einen konstanten Wert, der die Kontraktions- und Dehnfähigkeit eines Stabes bestimmt:

Poisson-Zahl

Treten in einem Körper keine Querkontraktionen auf ist

Am einfachsten zu beschreiben ist dabei noch die Geschwindigkeit einer Dehnwelle, also eine Ausbreitungsgeschwindigkeit eines Impulses in einem Stab ohne das Querkontraktionen ausgelöst werden, sie ist longitudinal: [4]. Diese Wellen treten oft in Stäben mit geringem Durchmesser auf, da in ihnen Querkontraktionen nicht begünstigt werden. Bei Dehnwellen in Stäben mit größeren Durchmessern (oder auch allgemein unendlich ausgedehnten Körpern) können zusätzlich Querkontraktionen ausgelöst werden, was bedeutet, daß sich der Querschnitt und die Länge des Stabes ändert. Bei ihnen muß deshalb die oben angeführte Poisson-Zahl einfließen. Sie läuft mit [4]. Die transversale Schubwelle muß nun mit der Formel der Geschwindigkeit transversaler Wellen in Festkörpern behandelt werden. Diese lautet [2], wobei G für das Torsionsmodul steht, welches man mit [2] umschreiben kann. So kommt man zu der Formel: [4]. Am kompliziertesten verhält sich die Biegewelle. Sie wird zusätzlich noch von der Form der Querschnittsfläche des Stabs beeinflußt. Bei einem rechteckigen Querschnitt mit der Höhe läuft die Welle mit der folgenden Geschwindigkeit: [4]. Diese Formel wird nur der Vollständigkeit halber aufgeführt und wird nicht weiter verdeutlicht, da dies zu komplex werden würde.



Beugung von Schallwellen


Bei einem Hindernis, das sich in einem "Schallstrom" befindet, wird nicht wie beim Licht ein einfacher Schatten geworfen, sondern die Schallwellen können um das Hindernis "herumgebeugt" werden. Dafür ist das Verhältnis zwischen der Wellenlänge und der Breite d des Hindernisses ausschlaggebend. Die Wellenlänge muß der Breite ähnlich sein, was meist beim Hörschall der Fall ist. Denn die Wellenlänge des Hörschalls geht von einigen Zentimeter bis zu mehreren Metern. Hindernisse in dieser Größenordnung dürften wohl die Regel sein. Die besten Ergebnisse bekommt man bei dem Verhältnis , also bei der Breite [2] des Hindernisses. Hier wird klar, daß bei extrem kurzen Wellenlängen, wie es bei Ultraschall der Fall ist, an normalen Hindernissen keine Beugung mehr auftreten kann. Eine weiteres Beispiel der Beugung ist eine Wand mit einem Loch. Wenn die Schallwellen auf die Wand treffen, bzw. das Loch erreichen, so bildet sich an der anderen Seite der Wand eine neue Elementarwelle, deren Ursprung das Loch ist. Der Schall wird hinter der Wand gebeugt und kann sich so wieder gleichmäßig ausbreiten. Das Ergebnis ist, daß man auch hinter der Wand überall den Schall hören kann, wenn auch stark gedämpft.


Reflexion von Schallwellen


Text Box: Abb. 3: Reflexion einer kreisförmigen Welle an einer ebenen WandTreffen gerade Wellen auf eine Wand so gilt: Einfallswinkel gleich Ausfallswinkel. Trifft eine kreisförmige Schallwelle auf eine Wand so wird diese so reflektiert als wenn das symmetrische Spiegelbild vom Ursprung Z der Ursprung der Reflexionswelle wäre.(siehe Abb.3) Unter Idealbedingungen ist die Reflexionswelle gleich der ursprünglichen Welle. Allerdings nimmt in der Realität die Wand einen Teil der Wellenenergie auf, da die Wand beim auftreffen der Schallwelle selbst in Schwingung versetzt wird und die Schallwelle gewissermaßen in der Wand weiterläuft.


Brechung von Schallwellen


Gehen Schallwellen von einem Medium in ein anderes über so geschieht das nicht auf geraden Weg ohne eine Veränderungen. Denn es kann sich dabei sowohl die Wellenlänge als auch die Ausbreitungsgeschwindigkeit ändern. Wechselt zum Beispiel der Schall von Luft, wo er ein Ausbreitungsgeschwindigkeit von ca. 331m/s hat, in Wasserstoff, so hat er plötzlich eine Ausbreitungsgeschwindigkeit von ca. 1284m/s. Hier muß man nun nochmals die Formel anführen. Man kann davon ausgehen, daß die Frequenz bei dem Übergang nicht verändert wird, da sie von der Schallquelle abhängig ist. Dem zufolge muß das Verhältnis von immer konstant bleiben. Wird also die Geschwindigkeit beim Übergang in ein anderes Gas größer muß auch die Wellenlänge größer werden. Ein weiteres gutes Beispiel ist die Erklärung des Phänomens der hohen Stimme, wenn ein Mensch sein Lungen mit Helium füllt. Die an den Stimmbändern angeregten Schallwellen bewegen sich nun mit der Schallgeschwindigkeit und der Wellenlänge von Helium fort. Verlassen die Schallwellen den Menschen müssen sie vom Helium in die Luft wechseln. Dabei verändern sich wie vorher beschrieben Wellenlänge und Schallgeschwindigkeit. Da die Schallgeschwindigkeit in Helium langsamer ist als in der Luft, werden Schallgeschwindigkeit und Wellenlänge beim Übergang in die Luft erhöht und der Zuhörer hat das Gefühl, daß die Person mit einer höheren Frequenz redet.


Der Doppler-Effekt


Fährt ein Auto an uns vorbei, so erscheinen die entstehenden Geräusche höher, wenn es auf uns zukommt. Wenn es jedoch an uns vorbeifährt und sich dann von uns wieder weg bewegt, werden die Geräusche schlagartig tiefer. Dieses Phänomen nennt man Doppler-Effekt. Der Grund dafür ist, daß die Abstände mit der uns die entstehenden Wellen treffen immer kürzer werden, wenn eine Schallquelle auf uns zukommt, und so neue Frequenzen entstehen. Denn eine Welle hat, da die Schallquelle immer in Bewegung ist, nie den gleichen Ursprung wie ihr Vorgänger, denn die Schallquelle hat sich schon wieder ein Stück bewegt. Die Wellenlänge ändert sich also, da zu der Strecke, die die normale Wellenlänge zurücklegen würde, noch die Strecke hinzukommt, die die Schallquelle in der Zeit T, also während der Periodendauer, zurücklegt. Die Schallquelle legt die Strecke während einer Periodendauer zurück. Die Welle legt die Strecke zurück. Die resultierende Wellenlänge ist also . An dieser Formel sieht man recht deutlich, daß die gesamte Wellenlänge kürzer werden muß, da der Zähler durch die Subtraktion der Text Box: Abb. 4: Schallwellen einer in Pfeilrichtung bewegten Schallquelle Schallquellengeschwindigkeit von der Schallgeschwindigkeit kleiner wird und somit auch den Gesamtwert verkleinert. Da die Schallgeschwindigkeit gleich bleibt, ändert sich jetzt die Frequenz nach der Formel . Bei dieser Formel wird , also die Schallgeschwindigkeit, immer viel größer sein als . Es sei denn die Schallquelle bewegt sich schneller als der Schall, was hier allerdings nicht behandelt wird. Das heißt, der Nenner wird immer zwischen 0 und 1 liegen, was zu einer Erhöhung der Frequenz führt. Hinter der Schallquelle wird die Wellenlänge dann natürlich länger und die Frequenz kleiner , da man in diesem Fall die negative Geschwindigkeit der Schallquelle nehmen muß. Es entsteht ein Schallfeld ähnlich dem in Abb.4 abgebildeten. Der andere Fall ist, daß sich der Beobachter auf eine feststehende Schallquelle zu bewegt oder sich von ihr entfernt. In diesem Fall erhöht, bzw. erniedrigt der Beobachter mit seiner eigenen Bewegung die Geschwindigkeit des Schalls. Was zur Folge hat, daß sich die Frequenz wie folgt ändert: . Die Geschwindigkeit des Beobachters addiert sich zu der Schallgeschwindigkeit, die Frequenz erhöht sich. Wenn sich der Beobachter von der Schallquelle weg bewegt, muß man für das + ein - einsetzen, die Frequenz wird dann niedriger.



Stehende Wellen


Eine stehende Welle setzt sich immer aus zwei interferierenden Wellen gleicher Frequenz und Amplitude zusammen. Meist erhält man stehende Wellen bei Reflexion an einer Wand, wobei sich die Welle mit der reflektierten Welle überlagert. Eine stehende Welle zeichnet sich besonders dadurch aus, daß bei ihr keine Energieübertragung mehr stattfindet, wie es bei einer fortschreitenden Welle der Fall wäre. Die Energie wird vielmehr gespeichert. Natürlich wirkt sich auch hier die Dämpfung aus, so daß auf die dauernde Erregung nicht verzichtet werden kann. Man kann bei solchen Wellen sogenannte Knotenpunkte und Bäuche beobachten.(siehe Abb.5) Die maximale Amplitude einer stehenden Welle ist doppelt so groß wie die der interferierenden Wellen. Stehende Wellen trifft man auch bei den Eigenschwingungen von Körpern an. Die Schwingung 1 in Abb.6 ist die Grundschwingung, Schwingung 2 die 1. Oberschwingung und Schwingung 3 die 2. Oberschwingung. Die Frequenz der Oberschwingungen ist ein Vielfaches der Grundschwingung. Im Beispiel in Abb.6 sind 3 Körper vorhanden. Allgemein gilt: Bei n Körpern können n Eigenschwingungen entstehen. Wenn man zum Beispiel die Eigenschwingungen eines eingespannten Seils erzeugen will, so muß man sich vorstellen, daß das Seil aus vielen kleinen Körpern besteht, die mit einer elastischen Verbindung versehen sind. Die Eigenschwingungen eines Seiles sind stehende Wellen, die an beiden Seiten fest sind.




Lautstärke


Die Lautstärke ist ein Begriff, der man im allgemeinen keine speziellen Einheiten oder Maßstäbe zuordnen kann. Denn sie wird durch den subjektiven Höreindruck des Menschen bestimmt. Er nimmt beispielsweise zwei Töne unterschiedlicher Frequenz, jedoch mit gleichem Schalldruck, verschieden laut wahr. Dies ist abhängig von der Empfindlichkeit seines Hörorgans, dem Ohr. Man hat man eine internationale Vereinbaren getroffen, in der ein 1000Hz-Ton als "Normalton" bezeichnet wird. Davon ausgehend wird ein Maßstab angelegt, dessen Einheit "phon" ist. Ein paar Beispiele dafür findet man in der Tabelle 1.


Das menschliche Gehör


Das menschliche Gehör ist ein sehr empfindliches Organ, das dem Menschen ermöglicht, akustische Signale aufzufangen. Dabei legt es eine erstaunliche Empfindlichkeit an den Tag. Denn mit seinem Querschnitt von ca. 0,5cm2 [2] ist es imstande eine Schallwelle mit nur 5*10-17 W [2] Schalleistung bei einer Frequenz 2300Hz zu empfangen. Das ist die kleinste Schalleistung, die das Ohr noch wahrnimmt, wobei dies nur für die Frequenz von 2300Hz gilt, bei der das Ohr die größte Empfindlichkeit von etwa 10-16 W/cm2 [2]. Das entspricht einer Schallstärke von 10000 W/m2. Das reicht aus um Schwingungen in der Luft wahrzunehmen, deren größte Verrückung weniger als ein Atomdurchmesser (10-10m) ist. Wie schon erwähnt, ist das Ohr in der Lage ein Frequenzspektrum von 16-20000Hz zu empfangen, wobei es mit zunehmendem Alter der Person immer kleiner wird. Die Empfindlichkeit des Ohres schrumpft, desto näher die Frequenzen der Wahrnehmungsgrenze kommen. Nicht zu vernachlässigen bei dem menschlichen Hörorgan ist der Orientierungsinn. Denn das Ohr hilft dem Menschen seine Umwelt richtig zu interpretieren. Er kann ziemlich genau bestimmen aus welcher Richtung eine Schallquelle ihn bestrahlt. Das ist möglich, indem er bestimmt welches seiner beiden Ohren das Signal eher empfängt. Dabei kann er bis zu 0,03ms[2] unterscheiden.

Abb.7: Versuchsskizze zu Versuch 1.

 
Versuch 1:

Das Ziel dieses Versuches ist es, Schallwellen grafisch in einem Oszilloskop darzustellen, um in späteren Versuchen damit Messungen durchzuführen. Dazu wird ein Lautsprecher aufgestellt, der über einen Verstärker an einem CD-Player, der hierbei als eingeschränkter Frequenzgenerator fungiert, angeschlossen wird. Im Abstand von 80cm wird nun ein Studio-Richt-Mikrofon auf gestellt. Ein Richt-Mikrofon wird deshalb genommen um möglichst nur die Schwingungen zu messen auf die man das Mikrofon richtet. Das Mikrofon wird seinerseits über einen Mikrofon-Verstärker an ein Oszilloskop angeschlossen. Im Oszilloskop wird der Sägezahngenerator aktiviert, um auf dem Display eine zeitabhängige Darstellung zu erhalten. Nun werden auf dem CD-Player verschiedene Sinus-Wellen abgespielt, wobei der Schalldruck nicht verändert wird.

Beobachtung:

Das Oszilloskop zeigt in seinem Display eine Sinuskurve mit konstanter Frequenz und Amplitude an. Andert man die Frequenz am CD-Player, so verändert sich auch die Frequenz der Sinuskurve, jedoch nicht die Amplitude. Nun kann man relativ sicher sein, daß die Aufnahmen beider Frequenzen nicht mit unterschiedlichem Schalldruck, der sich ja als Amplitude auf dem Display ausdrückt, aufgenommen wurde.

Fazit:

Sinus-Schallwellen können durch ein Oszilloskop grafisch als Sinuskurven dargestellt werden, wobei sich der Schalldruck in der Amplitude und die Frequenz in der Streckung ausdrückt.

Versuch 2:


Der Versuchsaufbau ist mit Versuch 1 identisch. Nun spielt man eine Frequenz ab und ändert den Schalldruck. Dies wird bei diesem Versuch nicht mit einer Regelung des Verstärkers erreicht, sondern durch Aufnahmen, die mit verschiedenen Schalldrücken aufgenommen wurden, um so die Ungenauigkeit, die der verwendete Verstärker in der Regelung der Tonabgabe hat, zu vermeiden. Es wird eine Frequenz von 400Hz abgespielt, bei der der Schalldruck dann um 7dB erniedrigt wird.

Beobachtung:

Bei normalem Abspielen der Frequenz von 400Hz kann man ca. 3,2 Kästchen messen. Dabei ist die Kästchenangabe beschränkt auf die verwendeten Einstellungen des Oszilloskops, die während dieses Versuchs natürlich nicht geändert wurden. Es ist nicht Möglich die Ergebnisse dieses Versuches mit nachfolgenden Versuchen oder auch diese Versuche untereinander zu vergleichen. Verringert man nun den Schalldruck um 7dB, so geht die Amplitude im Display auf 1,5 Kästchen zurück. Man kann nun das Verhältnis bilden: , wobei ist, was dem tatsächlichen Anfangsschalldruck entsprechen müßte. Der zweite Schalldruck wäre somit 6,1764dB

Fazit:

Es wird hier kein Fazit ausgedrückt, da zu den Ergebnissen der Versuche auf Seite 15 Stellung genommen wird.


Versuch 3:


Text Box: Abb.8: Skizze zu Versuch 3 (veränderter Ausschnitt von Versuch 1Bei diesem Versuch untersucht man nun das Verhalten von Schallwellen, wenn ein Hindernis im Weg steht. Der Abstand zwischen Mikrofon und Lautsprecher sind diesmal 100cm. Zunächst wird der Schalldruck ohne Hindernis gemessen. Danach mit Hindernis, wobei das Brett solange hin und her bewegt wird, bis man an einem Schalldruck-Maxima und an einem Minima angelangt ist. An diesen Punkten wird das Mikrofon nun einmal in der Mitte des Brettes gemessen, einmal 27,5cm nach rechts verschoben und einmal 27,5cm nach links verschoben, was ungefähr den Rändern des Brettes entspricht. Die gemessenen Werte wurden in eine Tabelle eingetragen:

Ohne Hindernis

Mit Hindernis - Maximum

Mit Hindernis - Minimum

Wert des Schalldruckes in Kästchen




Mikrofon 27,5cm rechts




Mikrofon mittig





Mikrofon 27,5cm links

Text Box: Abb. 9: Veränderte Skizze zur stehenden Welle-TheorieMan sieht, daß die Werte an manchen Stellen unregelmäßig sind. Wie zum Beispiel, daß, wenn das Mikrofon nach rechts verschoben wird, der Wert anders ist, als wenn es nach links um die gleiche Strecke verschoben wird. Hierbei ist eigentlich ein identischer Wert zu erwarten. Die Abweichungen sind dadurch zu erklären, daß der Raum, in dem die Versuche gemacht wurden, wahrscheinlich gänzlich ungeeignet für akustische Versuche ist. Denn es ist zu vermuten, daß die Schallwellen nicht nur direkt auf das Mikrofon treffen. Sie werden ebenfalls von den Wänden und Tischen reflektiert, die in diesem Fall noch dazu eine sehr glatte Oberfläche hatten, und werden treffen dann wieder auf das Mikrofon. Die Folgen davon sind, trotz der anfänglichen Sinus-Welle, sich überlagernde Wellen, die ein nicht zu überschauendes Wirrwarr an Schalldrücken hinterlassen. Daß jedoch bei dem Versuch zwischen Mikrofon und Lautsprecher während der hin und her Bewegung des Hindernisses Minima und Maxima in der Amplitude auftauchen, läßt eine stehende Welle vermuten. Diese stehende Welle könnte zum Beispiel durch Reflexion an der gegenüberliegenden Wand entstanden sein. Ihre Werte sind nicht eindeutig einer stehenden Welle zuzuordnen, da sich zum Beispiel die Wellen an den Knotenpunkten nicht aufheben, sondern immer noch ein beachtlicher Schalldruck herrscht. Denkt man sich die Störwellen weg, so kann man die Skizze in Abb. 9 als richtige Andeutung ansehen, wobei die Zeichnung nur einen theoretischen Idealfall darstellt.


Versuch 4:


Text Box: Abb.10: Skizze von Versuch 4Dieser Versuch dient eigentlich nur dazu, die schlechten Bedingungen des Versuchsraumes zu verdeutlichen. Zu diesem Zweck stellt man das Mikrofon nacheinander in die in Abb.10 dargestellten Positionen. Und zwar einmal direkt vor den Lautsprecher, einmal 200cm links von dieser Position und einmal 200cm rechts von der ersten. Diese drei Positionen werden einmal in 150cm Abstand von dem Lautsprecher durchgespielt und einmal in 300cm Entfernung. (Die seitlich stehenden Mikrofone werden dabei auf den Lautsprecher ausgerichtet und nicht parallel wie in Abb.10.)

Schalldruck in Kästchen

Bei 400Hz

150cm Abstand


300cm Abstand


Schalldruck in Kästchen

Bei 1000Hz

150cm Abstand


300cm Abstand


Mikrofon 1



Mikrofon 1



Mikrofon 2



Mikrofon 2



Mikrofon 3



Mikrofon 3



Hier sieht man sehr deutlich, daß die Meßwerte höchst unlogisch zu sein scheinen und weit über den Bereich der Meßungenauigkeit hinüber gehen. Man vergleiche beispielsweise die Werte von Mikrofon 1 und 3. Anzunehmen ist ein identischer Wert bei beiden Messungen. Jedoch wird eine Differenz von 0,6 Kästchen gemessen. Oder der Vergleich zwischen 1 und 1.1 bei 400Hz. Der Schalldruck beim weiter entfernten Mikrofon ist um 0,3 Kästchen höher als der Wert des näher plazierten. Dies könnte man zwar mit der Annahme begründen, daß der Abstrahlradius des Lautsprecher dafür verantwortlich ist, was jedoch von dem Meßwerten bei 3 und 3.1 bei 400Hz widerlegt wird. Bei 1000Hz bekommt man ähnlich konfuse Werte. (siehe Tabelle)

Fazit

Dieser Versuch diente in seinen Grundzügen nur der Beweisführung, daß die Meßergebnisse, die nicht den Erwartungen entsprachen, auf die Beschaffenheiten des Versuchsraumes zurückzuführen sind. Dies wird gezeigt, indem Meßergebnisse aufgeführt werden, die ohne die Mitwirkung der störenden Kräfte des Raumes, also der "Störwellen", komplett unlogisch und nicht zu erklären wären.


Kommentar


Diese Facharbeit behandelt den allgemeine Wirkung von Schallwellen auf Körper, bzw. Menschen. Es ist also ein Thema, daß fast die gesamte Akustik abdeckt. Dieses breite Spektrum an Möglichkeiten stellt einem als größtes Problem die Auswahl der Themen die in die Arbeit einfließen sollen. Die Schwierigkeit darin liegt vor allem darin, daß es wahrscheinlich der Wunsch eines jeden ist eine möglichst vollständige Arbeit zu leisten. Dies ist auch der Grund, daß ich mich für eine allgemeine Einführung in die Akustik entschieden habe. Ich meine, dieser Weg bietet die besten Möglichkeiten die Wirkung von Schallwellen zu beschreiben. Auch die durchgeführten Versuch zielen auf eine Veranschaulichung einfacher Prinzipien der Akustik. Doch leider führten sie zu der Erkenntnis, daß es bei Schallwellen komplexe Nebenerscheinungen gibt, die sich zwar nur aus Reflexion, Beugung, Brechung, zusammensetzen, doch nicht mit den vorhandenen Mitteln exakt bestimmt werden konnten. Jedoch konnten durch die Versuche viele Prinzipien von Schallwellen verdeutlicht werden und das Verständnis, das es möglich machte die einzelnen Themen zu erarbeiten, ist durch die Versuche deutlich gewachsen.



Glossar



Schallgeschwindigkeit

Die Schallgeschwindigkeit ist die Ausbreitungsgeschwindigkeit des Schalls. Sie läuft also mit . Will man sie ohne die Wellenlänge ausrechnen, so braucht man Formeln, die von der Materie, in der sich der Schall befindet, abhängig sind.


Wellenlänge

Die Wellenlänge stellt den Abstand zwischen zwei Teilchen dar, die sich in der gleichen Position befinden. Dabei ist auch der Vektor zu beachten. Das Symbol für die Wellenlänge ist


Schalldruck

Als Schalldruck bezeichnet man die Amplituden der Druckwellen. Er bezeichnet also die Stärke des Schalls. Er beeinflußt direkt die vom Menschen subjektiv wahrgenommene Lautstärke.

=>


Schallschnelle

Als Schallschnelle bezeichnet man die periodische Zusatzgeschwindigkeit, die der Schall den Molekülen gibt. Dabei werden immer die Amplituden, also die Maxima angegeben.

=> [3], wobei sm die Amplitude einer Sinus-Welle sei.


Schallstärke

Die "Transporter" einer Welle, also die einzelnen Oszillatoren, brauchen für ihre Bewegung Energie (Schwingungsenergie), der eine Energiestromdichte hinzukommt. Die Schallstärke ist die mittlere Energiestromdichte I. Die Energiedichte wird von der Welle transportiert und zwar mit Ausbreitungsgeschwindigkeit

=>  mit der Einheit [

Wird die Energiestromdichte I auf einen Absorber mit der Fläche A weitergegeben, der quer in der Welle steht, so übernimmt dieser die Strahlungsleistung P. Dies gilt allgemein für jede Welle. Die zugehörige Formel ist , Einheit [

Die Schalldichte kann man auch durch [4] ausdrücken, wobei die Massendichte und die maximale Schallschnelle darstellt.


Schalleistung

Kommt eine Schallwelle auf eine Fläche A mit der Ausbreitungsgeschwindigkeit c zu, so gilt bei einer ebenen Welle: . Und die von der Schallwelle übertragende Leistung ist:

















Quellenverzeichnis


Grehn, Joachim (Hg.)

METZLER PHYSIK

J.B. Metzlersche Verlagsbuchhandlung, Stuttgart, 19922


Grimsehl, E.; Schallreuter W.; Altenburg K.

Grimsehl - Lehrbuch der Physik

Band 1 - Mechanik Akustik Wärmelehre

BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 197722


Hammer, K.

Grundkurs der Physik Teil1

R. Oldenbourg Verlag München Wien, München, 19833


Harten, H.-U.; Nägerl, H.; Schulte, H.-D.

Schwingungen und Wellen

Studio Visuell-Reihe

Herder-Verlag, o. O., o. J.


Friedrich, A.

Handbuch der experimentellen Schulphysik

Schwingungen Wellen Schall Ultraschall

Aulis Verlag Deubner & Co. KG, Köln, 1961


Kuchling, H.

PHYSIK - Formeln und Gesetze

Buch- und Zeit-Verlagsgesellschaft mBH, Köln, 19718


Hilfestellung von der PTB Braunschweig

Ansprechpartner: Herr Wogram


bhv WinFunktion Mathematik 8.0

Computerprogramm (Lexikon)


bhv WinFunktion Physik 9.0

Computerprogramm (Lexikon)




Hinweise in der Facharbeit auf eine der Quellen sehen wie folgt aus:

= Quelle [1], [2] = Quelle [2],
















Erklärung 1




Hiermit versichere ich, daß ich die Arbeit selbständig angefertigt, keine anderen als die angegebenen Hilfsmittel benutzt und die Stellen, die im Wortlaut oder im wesentlichen Inhalt aus anderen Werken entnommen wurden, mit genauer Quellenangabe kenntlich gemacht habe. Verwendete Informationen aus dem Internet sind dem Lehrer vollständig im Ausdruck zur Verfügung gestellt worden.






Uetze, den 27. November 1998                    Unterschrift: _____ _______ ______ ______

Sebastian Schlüterbusch













Erklärung 2




Hiermit erkläre ich, daß ich damit einverstanden bin, wenn die von mir verfaßte Facharbeit der schulinternen Öffentlichkeit zugänglich gemacht wird.






Uetze, den 27. November 1998                    Unterschrift: _____ _______ ______ ______

Sebastian Schlüterbusch



















Haupt | Fügen Sie Referat | Kontakt | Impressum | Nutzungsbedingungen