TECHNOLOGIEREFERAT
THEMA: MESSWERTAUFNAHME
Inhaltverzeichnis
Meßwertaufnehmer
Das Prinzip der Meßwertaufnahme
Der Begriff Meßwertaufnehmer
Wegaufnehmer
Der Ohmsche Wegaufnehmer
Induktive Wegaufnehmer
Kapazitive Wegaufnehmer
Induktive Näherungssensor
Meßwerte
Meßwertaufbereitung
Meßwertübertragung
1.1. Das Prinzip der Meßwertaufnahme
|
Der Sensor nimmt die physikalische Größe (z.B. Temperatur)
auf.
Eine Anpaßschaltung besteht aus Filter und Verstärker und sorgt so für ein entstörtes, verstärktes und genormtes Ausgangssignal. Je nach Einsatzgebiet kann das analoge Signal auch mittels eines A/D-Wandler in ein digitales Signal umgewandelt werden.
An letzter Stelle steht die Ausgabe des Signal durch Zeiger (analog) oder Digitalanzeigen.
Eine Meßkette besteht aus Meßkettenglieder. Jedem dieser Glieder wird ein sogenannter Meßgliedkoeffizient C zugeordnet. Er wird durch folgende Rechnung ermittelt:
Beispiel bei einem Thermoelement:
1.2. Der Begriff Meßwertaufnehmer
Man unterscheidet bei Sensoren zwischen passiven und aktiven Meßwertaufnehmer.
Die passiven Meßwertaufnehmer ermitteln indirekt die Meßgröße und lassen sich in drei Kategorien unterteilen:
Ohmsche Meßwertaufnehmer: Der Widerstand ändert sich durch mechanische Einflüsse. Die zu messende Größe wird durch diese Widerstandsveränderung festgestellt.
Induktive Meßwertaufnehmer: Die zu messende Größe wird durch die Veränderung der Induktivität ermittelt, die durch Verschiebung des Eisenkerns hervorgerufen wird.
Kapazitive Meßwertaufnehmer: Die Meßgröße wird anhand der Kapazitätsänderung durch die mechanische Abstandsänderung der Kondensatorplatten bestimmt.
Die aktiven Meßwertaufnehmer erzeugen direkt eine zur physikalischen Meßgröße proportionale Spannung.
2.1. Der Ohmsche Wegaufnehmer
Ein Ohmscher Wegaufnehmer dient zur Messung von Strecken, Position, Winkel.
Problemstellung: Ein zurückgelegter Weg bzw. eine bestimmte Position beispielsweise eines Druckerwagens soll ermittelt werden.
Ansatz: Eine Spannung muß in Abhängigkeit des Weges bzw. der Position des Wagens gebracht werden.
Realisierung: Ein Widerstandsdraht wird an die Spannung U angeschlossen. Ein : sogenannter Wegaufnehmer greift einen Teil des Widerstandsdrahtes ab. Die Spannung U2 ist proportional zur Länge l2.
Formel:
Es gilt die sogenannte Spannungsteilregel.
Der Widerstand des gesamten Drahtes wird durch errechnet, wobei g die spezifische Leitfähigkeit des Widerstandsdrahtes ist und q der Querschnitt des Leiters.
Der Widerstand Teilstückes l2 läßt sich also mit ermitteln.
Logischer Weise ist .
Setzt man nun R und R2 ein, erhält man .
Man sieht, je größer l2 ist, desto größer ist U2; sie sind proportional.
Diese Proportionalität gilt nur dann, wenn der Spannungsteiler unbelastet ist, d.h. er besitzt keinen Widerstand. Die Proportionalität wird allerdings annähernd bei einem hochohmigen Spannungsteiler erreicht. Als Spannungsteiler bezeichnet man den Teil zwischen dem Spannung U2 gemessen wird.
Der Nachteil beim Widerstandsdraht besteht darin, daß nur geringe Widerstandswerte (R2) erreicht werden und dadurch eine geringe Präzision gewährleistet ist. Eine Alternative hierzu ist es, wenn man einfach den Draht zu einer Wendel verformt. Der einzige Nachteil wiederum ist es, daß der sogenannte Schleifer beim "springen" von Windung zu Windung den Widerstandswert nur sprunghaft ändert (siehe Abbildung rechts).
Abhilfe schafft ein Schleifdraht, ein aus Leitplastik bestehendes Material, welches durch Einlagerung von Kohle leitet. Mehrere Kontaktfinger sorgen für einen guten Kontakt zwischen Schleiferdraht und Schleifer.
|
(Siehe auch Folie Abb. 1 (Schleifdraht), 2 (wendelförmiger Widerstandsdraht))
2.2. Induktive Wegaufnehmer
|
Ein induktiver Wegaufnehmer mißt den zurückgelegten Weg anhand der Induktivitätsveränderung. Er besteht aus einem beweglichen Eisenkern (Anker) der von meistens zwei Spulen ummantelt ist. Die Induktivität ist abhängig von der Leitfähigkeit des Eisenkerns, der Anzahl der Windungen und den Abmessungen der Spule. Diesen Aufbau nennt man auch Tauchankergeber.
Um nun einen Weg messen zu können muß dieser Komplex in eine Brückenschaltung (siehe rechts) eingebaut werden. Wird der Eisenkern (schwarzer Balken) nun verschoben, so entsteht eine Brückenspannung U2. U2 ist gleich null, wenn sich der Eisenkern in Mittelstellung befindet. Abbildung 3 der Folie zeigt die Kennlinie der Brückenspannung U2, wenn der Eisenkern in der oberen bzw. unteren Stellung ist. Abbildung 4 zeigt den Verlauf von U2 bei Mittelstellung des Eisenkerns. Abbildung 5 zeigt den phasenverschobenen Verlauf von U2 bei unterer bzw. oberer Stellung des Eisenkerns.
2.3. Kapazitive Wegaufnehmer
|
Wenn man sich folgende
Formel zur Berechnung der
Kapazität (Einheit [F] = Farad) eines
Kondensators näher betrachtet, erkennt man, daß die Kapazität C mit Abnahme des
Kondensatorenplattenabstands d zunimmt. Auf dieser Tatsache beruht das Prinzip
des kapazitiven Wegaufnehmers. Die Konstanten e0 bzw. er werden durch die Beschaffenheit des Raumes
zwischen den zwei Kondensatorenplatten bestimmt und brauchen für unsere
Betrachtung nicht beachtet zu werden. Die Variable A gibt die Größe der Fläche
einer Kondensatorenplatte an. Ein kleiner Nachteil dieser Technik ist die
geringe Kapazitätsänderung, die Probleme bei der Signalverstärkung mit sich
bringen kann. Die Vorteile jedoch sind die direkte Umwandlung in eine
elektrische Größe und die Resistenz gegen Störungsquellen.
2.4. Induktive
Näherungssensor
Der induktive Näherungssensor besteht grundlegend aus drei Elementen:
|
Oszillator:
Der Oszillator erzeugt ein elektromagnetisches Wechselfeld, das sich im freiem Raum ausbreitet. Nähert sich nun ein leitfähiges Material der Sensorfläche, so werden Wirbelströme in dieses induziert. Dadurch verliert der Oszillator an Energie und sein Pegel am Ausgang ändert sich.
Schmitt-Trigger:
Der Schmitt-Trigger schaltet bei einer Ausgangspegeländerung des Oszillators durch.
Schaltverstärker
Der Verstärker ist -wie der Name schon sagt- zur Verstärkung des Signals vom Schmitt-Trigger da.
Ab welchem Abstand zwischen aktiver Fläche und dem leitfähigen Stoff die Schaltung durchschalten soll, wird durch den Nennschaltabstand Sn bestimmt. Der tatsächliche Schaltabstand wird mit berechnet. Der Nennschaltabstand wird durch ein genormtes, quadratisches Stahlplättchen von 1mm Dicke gemessen, dessen Seiten so lang wie der Durchmesser der aktiven Fläche ist. Dieses Plättchen läßt den Näherungssensor bei einem vergleichsweise großen Abstand durchschalten. Die Konstante k ist aus Tabellen abzulesen.
Während dieses Model des Näherungssensor nur zwei Zustände, nämlich an oder aus kennt, gibt es auch noch Näherungssensoren, die zu bestimmten Entfernungen von der aktiven Fläche bis zum Meßplättchen proportional eine Spannung erzeugen. Diese Technik eignet sich hervorragend für Abstandsmessungen.
3.1. Meßwertaufbereitung
Wie schon kurz beschrieben wurde, besteht die Anpaßschaltung aus Verstärker und Filter.
Als Verstärker werden im allgemeinen Differenzverstärker verwendet. Der Vorteil liegt in einem hochohmigen Eingang, der den Signalausgang des vorgeschalteten Elements nur gering belastet. Er verspricht durch einen niederohmigen Ausgang "Easy Handling".
Ein Filter besteht aus einer Schaltung, deren Ziel es ist, Störsignale zu "filtern" bzw. zu verringern. Einfache Filter bestehen aus in Reihe geschalteten Kondensator und Widerstand.
3.2. Meßwertübertragung
Bei der Meßwertübertragung ist darauf zu achten, daß man eventuelle Störungsquellen vermeidet. Bei längeren Übertragungsstrecken überträgt man das Signal mit einem zur Meßgröße proportionalen Strom; bei kürzeren Strecken genügt die Übertragung der Spannungswerte.
Zu berücksichtigen ist ebenfalls die Verfälschung, die durch den Potentialunterschied zwischen den Bezugsmassen von Sensorsignal und Endpunkt des Meßsignals entsteht. Eine galvanische (völlig abgeschirmte) Trennung der Meßsignale.
Die einfachste Methode, Signale zu übertragen, ist und bleibt das Übertragen von digitalen Signalen. Sie sind leicht zu handhaben und können nur schwer verfälscht werden.
Haupt | Fügen Sie Referat | Kontakt | Impressum | Nutzungsbedingungen