In der Informatik sind neben dem Zehnersystem auch noch das binäre Zahlensystem und das hexadezimale Zahlensystem von Bedeutung. Als Geburtsstunde der binären Zahlendarstellung gelten die Arbeiten von G.W. Leibniz aus dem Jahre 1703. Leibniz Interesse galt vor allem zahlentheoretischen Untersuchungen. Die heutige Bedeutung des binären Zahlensystems beruht auf seiner Verwendung in digitalen Computern. Die Bedeutung des hexadezimalen Zahlensystems ergibt sich vor allem daraus, daß es relativ leicht ist, Zahlen aus dem binären in das hexadezimale System und zurück umzurechnen, und man so eine kompaktere Schreibweise als bei binären Zahlen erhält.
Dies ist eine Zahlendarstellung, bei der jede Zahl als Ziffernfolge dargestellt wird, in der ein gedachter, das heißt aus der Ziffernfolge nicht erkennbarer Dezimalpunkt, an einer bestimmten Stelle steht. Der Dezimalpunkt steht immer an einer fixen Stelle, das heißt, die Anzahl der Vorkommastellen ist genauso wie die Anzahl der Nachkommastellen fix festgehalten.
Beispiel: Darstellung der binären Zahl +110,010b (= +6,25d) in Festkommadarstellung:
|
|
|
|
|
|
|
|
Vorzeichen |
Vorkommateil |
Nachkommateil |
Negative Zahlen werden meistens mittels Zweier Komplement dargestellt. Der Wertebereich der Zahlen wird dabei die Anzahl der zur Verfügung stehenden Bits eingeschränkt: Die größte positive Zahl ist dann +(2^n-1), die kleinste negative Zahl -(2^n), wobei n die Anzahl der Bit ist, die für die Darstellung der Zahl (excl. Vorzeichen) zur Verfügung stehen.
Beispiel: n:= 8 Bit
Vorzeichenlos (alle 8 Bit werden für die nicht negative Zahl verwendet):
Wertebereich von 0 bis 255 (unsigned char)
Vorzeichenbehaftet (erstes Bit ist für das Vorzeichen der Zahl zuständig, 0
positiv, 1 negativ): Wertebereich (-128 bis +127)(char)
Vorteile:
Doch Vorsicht: Bei Rechenoperationen muß muß man auf das Format selber achten, und gegebenenfalls konvertieren. Bei Multiplikationen und Divisionen hat das Ergebnis mehr Nachkommastellen haben als die Operanden => runden oder abschneiden des Ergebnisses führt zu Informationsverlust!
(16,0 Bit Festkommadarstellung)Bei der Addition/Subtraktion kann man leicht die einzelnen Teile addieren, es muß nur der Übertrag beachtet werden. Genauigkeitsprobleme gibt es keine, einzig ein Überlauf (Symbol G) ist möglich.
Multiplikationen sind auch relativ leicht zu machen, indem man die einzelnen Teile multipliziert. Das Ergebnis benötigt maximal doppelt so viel Platz wie die Operanden.
Die Division der speziellen Form (Division durch kleine Zahlen)
A B , Dist wie man sieht relativ leicht zu lösen. Die Division der allgemeinen Form (Division durch große Zahlen) A B D E ist leider nur mit rechenintensiveren Vergleichs und Bitoperationen beizukommen.
Zur Verdeutlichung der Festkomma Arithmetik habe ich ein Beispielprogramm in Assembler geschrieben, das die Zahl PI nähert. Das Programm basiert auf der alternierenden Summe der Kehrwerte ungerader Zahlen: Pi/4 = 1/1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + => 3,1415926 (In Derives Notation: SUM(4*(-1)'(n+I)/(n*2-1),n,1,10000) )
Das BCD Format ist ein Mittelding zwischen der Speicherung in ASCII und der binären Speicherung der Zahlen. Das normale BCD Format sieht für jede Dezimalstelle ein Byte vor (verschwendet also einen Großteil), und das gepackte BCD Format speichert in jedem Byte 2 Dezimalstellen ab, indem jeweils 4 Bits für eine Dezimalziffer verwendet werden. Das BCD Format hat den Vorteil, daß man zum Beispiel bei kaufmännischen Anwendungen die Dezimal-Genauigkeit genau festlegen kann, und keine Rundungs/Überlauffehler hat. Nachteile sind die Speicherverschwendung und das Jahr 2000 Problem.
Bei dieser Darstellung wird die Position des Dezimalpunktes einer Zahl zusätzlich dynamisch geregelt.
Unangenehmerweise ist es möglich, ein und dieselbe Zahl auf verschiedenste Arten darzustellen. Zum Beispiel: 0,123 = 123 * 10^-3 = 1230 * 10^-4 = 12300 * 10^-5 Darum wurde für die Gleitkommadarstellung die normierte Form entwickelt: Die Mantisse ist eine Zahl, deren Vorkommateil 1 ist. Einzigster Problemfall: Die Zahl 0. Die restliche Information der Zahl ist im Nachkommateil der Mantisse und im Exponenten der Zahl.
Normiert man z.B. die binäre Zahl +11001,1011 sieht das Ergebnis folgendermaßen aus: +1,10011011 * 10^100 Da die Ziffer vor dem Komma also fast immer 1 ist (Ausnahme: 0), kann man auf deren Abspeicherung verzichten und gewinnt so ein zusätzliches Mantissenbit, wodurch die Genauigkeit erhöht werden kann. Diese Genauigkeit wird allerdings mit der Sonderbehandlung von 0 erkauft.
Es muß also nur das Vorzeichen (1 Bit), die sogenannte Mantisse und der Exponent abgespeichert werden.
In der Praxis treten positive Exponenten häufiger auf als negative. Man vergrößert daher den Bereich für positive Exponenten auf Kosten der negativen Exponenten. Das geschieht dadurch, daß zum Wert des Exponenten ein konstanter Betrag k addiert wird. Diese Konstante k wird als Charakteristik bezeichnet.
Bsp.: k=4; darzustellender Wert: 173d
r +173 = 10101101 binär = 0,101011010 * 2^8 normalisiert.
Darstellung des Exponenten 8-4 = 4 = 100 binär.
An diesem Beispiel kann man die Vergrößerung in Richtung der positiven Zahlen deutlich sehen: Die Zahl 173 könnte ohne Charakteristik in diesem Format gar nicht dargestellt werden, da der Exponent 8 ist (Binär: 1000) und 3 Bits im Exponenten für die Darstellung von 8 nicht reichen würden.
Die Genauigkeit der Gleitkommazahlen ist relativ zur Größe der Zahl, und kann grob durch die Formel Genauigkeit(Gleitkomma):=a-Log(|x|) beschrieben werden. Die Genauigkeit von Festkommazahlen hingegen ist absolut, und entspricht der Formel Genauigkeit(Festkomma):=Anzahl_Nachkommabits*log(2)/log(10).
Das IEEE Format (Institute of Electrical and Electronics Engineers) ist eine genormte Gleitkommadarstellung und wird in den meisten Rechnersystemen verwendet. Bei beiden Formaten wird nur der Nachkommateil der Mantisse abgespeichert (1 Bit gespart)
IEEE Formate:
Gesamtlänge |
Vorzeichen |
Exponent |
Mantisse |
Charakteristik |
C/C++ Bezeichnung |
32 Bit |
1 Bit |
8 Bit |
23 Bit |
|
float |
64 Bit |
1 Bit |
11 Bit |
52 Bit |
|
double |
Beispiel: Wie werden die folgenden Zahlen in der Programmiersprache C abgespeichert?
void mainReelle Zahlen können im Gleitkommaformat nicht immer exakt dargestellt werden. Dadurch kann es bei der Berechnung von arithmetischen Ausdrücken zu Ungenauigkeiten kommen.
Beispiel: 0,1d=0,00011001100110011b Beispiel 0,11; 0,2; 0,4, usw. können nicht genau dargestellt werden.
Daher: Zahlen im Gleitkommaformat (float,double,) nie auf Gleichheit prüfen! Statt dessen Prüfung auf > oder < oder E-Bereich.
int main()Bei der Berechnung arithmetischer Ausdrücke kommt es durch Rundungsfehler und Überlauffehler bei Zwischenergebnissen zu Ungenauigkeiten. Beispiel: 5-stellige ganze Zahlen A = 00900 B = 10000
A * B / 100 = 00000Also: Auf die Reihenfolge der Auswertung achten!
Das Jahr 2000 Problem entstand durch die kurzsichtige Umsetzung der Datumsformate mit nur 2 Jahresziffern. Statt die ganze Jahreszahl abzuspeichern (z.B. 1980) wurden nur die letzten 2 Stellen abgespeichert (80). Gerade das BCD Format verleitet dazu, auf diese Weise Speicher zu sparen.
Die meisten Computer verwenden bei der Ein und Ausgabe von Zahlen das Zehnersystem. Trotzdem kann es vorkommen, daß man in die Lage versetzt wird, eine hexadezimale Zahl in ihr dezimales Aquivalent umrechnen zu müssen.
Als Beispiel wird die Zahl 29d ins binäre System umgerechnet
29 mod 2 = 1 29 div 2 = 1429 mod 2 gibt 1. 29 div 2 gibt 14, und 14 wird für die nächste Rechenoperation verwendet. Der Vorgang wird solange wiederholt, bis das Ergebnis der Divison 0 ist. Da das Ergebnis von unten nach oben gelesen werden muß, lautet es: 29d = 11101b.
Als Beispiel wird die Zahl 1 1001b ins dezimale System umgerechnet. (1*2+1)*2+0)*2+0)*2+1=25d Schema: Die erste Ziffer wird mit der Basis des Systems multipliziert und die nächste Ziffer wird zum Ergebnis addiert. Das Ergebnis wird wieder mit der Basis des Systems multipliziert und die nächste Ziffer wird addiert. Der Vorgang wiederholt sich solange, bis die letzte Ziffer addiert wurde. Dieses Verfahren wird auch Hornerschema genannt.
Zur Verdeutlichung wird die Zahl 0,815d in das binäre Zahlensystem umgewandelt.
Das Schema funktioniert folgendermaßen: Die umzuwandelnde Zahl wird mit der Basis des Zielsystems multipliziert. Die Vorkommastelle des Ergebnisses ist die erste Ziffer des Endergebnisses. Die Nachkommastelle des Ergebnisses wird für die nächste Multiplikation verwendet. Im Beispiel wird das Ergebnis nur auf 5 Nachkommastellen genau ausgerechnet. Das Ergebnis wird bei diesem Rechenverfahren von oben nach unten gereiht, und sieht folgendermaßen aus: 0,11010b.
Als Beispiel wird die Zahl 0,11010b in ihr dezimales Aquivalent umgerechnet. (0/2+1)/2+0)/2+1)/2+1)/2=0.8125d Das Schema ist ähnlich dem Hornerschema bei der Umwandlung von einem anderen System ins dezimale, nur wird mit der Basis des Zielsystems dividiert (und nicht multipliziert) und die Ziffern der umzuwandelnden Zahl werden von hinten nach vorne bearbeitet.
Die Umwandlung zwischen binärer und hexadezimaler Darstellung kann leicht durchgeführt werden. Man denkt sich die Ziffern der Zahl in ihrer binären Darstellung vom Dezimalpunkt weg sowohl nach links als auch nach rechts in Vierergruppen aufgeteilt und konvertiert jede Gruppe für sich. Gegebenenfalls sind führende Nullen zu ergänzen oder Nullen am Ende anzuhängen.
Beispiel: 010 1010 1l10,1111 0001 1000b = 2AE,F18h
Die Umwandlung in die umgekehrte Richtung ist genau so leicht zu realisieren. Jede hexadezimale Ziffer entspricht einer Vierergruppe im Binären System. Die Tatsache, daß die Konvertierung zwischen diesen beiden Zahlendarstellungen so leicht durchgeführt werden kann und die kompakte Darstellung sind die Hauptgründe für die Verbreitung des hexadezimalen Zahlensystems innerhalb der Informatik.
Eine negative Zahl -x erfüllt im Prinzip nur die Forderung: x + (-x) = 0 Diese einfache Forderung kann dadurch realisiert werden, daß man negative Zahlen im Binärsystern im Zweierkomplement abspeichert. Das Zweierkomplement sei an einem Beispiel erklärt: +5d = 0000 0101b Man invertiert zuerst jede Ziffer der positiven Zahl. (1111 1010b) Zum Ergebnis zählt man 1 hinzu und erhält so das Zweierkomplement -5d = 1111 1011b. Um negative Zahlen wieder in ihre Postive Form zu bringen, muß die Prozedur nur wiederholt werden: -13d = 1111 0011b; invertiert: 0000 1100b; 1 hinzugezählt: 0000 1101b = 13d
Ersteller: Philipp Gühring
Lizenz: OPL,GPL Datum: 019990223@983, 019990301@705, 019990402@102
Jede Zahl wird als Ziffernfolge abgespeichert, der Dezimalpunkt ist fest vorgegeben und wird nicht mit abgespeichert. Die Anzahl der Vorkommastellen ist genauso wie die Anzahl der Nachkommastellen fix.
Beispiel: Darstellung der binären Zahl +110,010b (= +6,25d) in Festkommadarstellung:
|
|
|
|
|
|
|
|
Vorzeichen |
Vorkommateil |
Nachkommateil |
Negative Zahlen werden meistens mittels Zweier Komplement dargestellt. Der Wertebereich der Zahlen wird dabei die Anzahl der zur Verfügung stehenden Bits eingeschränkt: Die größte positive Zahl ist dann +(2^n-1), die kleinste negative Zahl -(2^n), wobei n die Anzahl der Bit ist, die für die Darstellung der Zahl (excl. Vorzeichen) zur Verfügung stehen.
Beispiel: n:= 8 Bit
Vorzeichenlos (alle 8 Bit werden für die nicht negative Zahl verwendet):
Wertebereich von 0 bis 255 (unsigned char)
Vorzeichenbehaftet (erstes Bit ist für das Vorzeichen der Zahl zuständig, 0
positiv, 1 negativ): Wertebereich (-128 bis +127)(char)
Vorteile:
Doch Vorsicht: Bei Rechenoperationen muß muß man auf das Format selber achten, und gegebenenfalls konvertieren. Bei Multiplikationen und Divisionen hat das Ergebnis mehr Nachkommastellen haben als die Operanden => runden oder abschneiden des Ergebnisses führt zu Informationsverlust!
Das BCD Format ist ein Mittelding zwischen der Speicherung in ASCII und der binären Speicherung der Zahlen. Das normale BCD Format sieht für jede Dezimalstelle ein Byte vor (verschwendet also einen Großteil), und das gepackte BCD Format speichert in jedem Byte 2 Dezimalstellen ab, indem jeweils 4 Bits für eine Dezimalziffer verwendet werden. Das BCD Format hat den Vorteil, daß man zum Beispiel bei kaufmännischen Anwendungen die Dezimal-Genauigkeit genau festlegen kann, und keine Rundungs/Überlauffehler hat. Nachteile sind die Speicherverschwendung und das Jahr 2000 Problem.
Bei dieser Darstellung wird die Position des Dezimalpunktes einer Zahl zusätzlich dynamisch geregelt.
Unangenehmerweise ist es möglich, ein und dieselbe Zahl auf verschiedenste Arten darzustellen. Zum Beispiel: 0,123 = 123 * 10^-3 = 1230 * 10^-4 = 12300 * 10^-5 Darum wurde für die Gleitkommadarstellung die normierte Form entwickelt: Die Mantisse ist eine Zahl, deren Vorkommateil 1 ist. Einzigster Problemfall: Die Zahl 0. Die restliche Information der Zahl ist im Nachkommateil der Mantisse und im Exponenten der Zahl.
Normiert man z.B. die binäre Zahl +11001,1011 sieht das Ergebnis folgendermaßen aus: +1,10011011 * 10^100 Da die Ziffer vor dem Komma also fast immer 1 ist (Ausnahme: 0), kann man auf deren Abspeicherung verzichten und gewinnt so ein zusätzliches Mantissenbit, wodurch die Genauigkeit erhöht werden kann. Diese Genauigkeit wird allerdings mit der Sonderbehandlung von 0 erkauft.
Es muß also nur das Vorzeichen (1 Bit), die sogenannte Mantisse und der Exponent abgespeichert werden.
In der Praxis treten positive Exponenten häufiger auf als negative. Man vergrößert daher den Bereich für positive Exponenten auf Kosten der negativen Exponenten. Das geschieht dadurch, daß zum Wert des Exponenten ein konstanter Betrag k addiert wird. Diese Konstante k wird als Charakteristik bezeichnet.
Bsp.: k=4; darzustellender Wert: 173d
r +173 = 10101101 binär = 0,101011010 * 2^8 normalisiert.
Darstellung des Exponenten 8-4 = 4 = 100 binär.
An diesem Beispiel kann man die Vergrößerung in Richtung der positiven Zahlen deutlich sehen: Die Zahl 173 könnte ohne Charakteristik in diesem Format gar nicht dargestellt werden, da der Exponent 8 ist (Binär: 1000) und 3 Bits im Exponenten für die Darstellung von 8 nicht reichen würden.
Die Genauigkeit der Gleitkommazahlen ist relativ zur Größe der Zahl, und kann grob durch die Formel Genauigkeit(Gleitkomma):=a-Log(|x|) beschrieben werden. Die Genauigkeit von Festkommazahlen hingegen ist absolut, und entspricht der Formel Genauigkeit(Festkomma):=Anzahl_Nachkommabits*log(2)/log(10).
Das IEEE Format (Institute of Electrical and Electronics Engineers) ist eine genormte Gleitkommadarstellung und wird in den meisten Rechnersystemen verwendet. Bei beiden Formaten wird nur der Nachkommateil der Mantisse abgespeichert (1 Bit gespart)
IEEE Formate:
Gesamtlänge |
Vorzeichen |
Exponent |
Mantisse |
Charakteristik |
C/C++ Bezeichnung |
32 Bit |
1 Bit |
8 Bit |
23 Bit |
|
float |
64 Bit |
1 Bit |
11 Bit |
52 Bit |
|
double |
Reelle Zahlen können im Gleitkommaformat nicht immer exakt dargestellt werden. Dadurch kann es bei der Berechnung von arithmetischen Ausdrücken zu Ungenauigkeiten kommen.
Beispiel: 0,1d=0,00011001100110011b Beispiel 0,11; 0,2; 0,4, usw. können nicht genau dargestellt werden.
Daher: Zahlen im Gleitkommaformat (float,double,) nie auf Gleichheit prüfen! Statt dessen Prüfung auf > oder < oder E-Bereich.
Bei der Berechnung arithmetischer Ausdrücke kommt es durch Rundungsfehler und Überlauffehler bei Zwischenergebnissen zu Ungenauigkeiten.
Haupt | Fügen Sie Referat | Kontakt | Impressum | Nutzungsbedingungen